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H I G H L I G H T S

• Rose Bengal thin films were deposited on glass substrates with different thicknesses.

• Refractive and extinction indices values are calculated by Kramers-Kronig calculations.

• Third-order nonlinear optical susceptibility and refractive index values were estimated.

• Optical limiting is found to be enhanced by increasing the film thickness.

• Rose Bengal is a promising candidate for wide-scale optoelectronic applications and laser power attenuation.
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A B S T R A C T

Highly stable Rose Bengal (RsB) organic semiconductor thin films were deposited on glass substrates with dif-
ferent thicknesses ranging from 95 to 325 nm. Optical transmission, reflection, and absorption studies were
employed to analyze various optical constants. Refractive index and extinction coefficient values were attained
using Kramers-Kronig calculations from the reflectance data. Dielectric constant, loss and dissipation factor were
studied. Third-order nonlinear optical susceptibility and refractive index values were estimated using linear
refractive index and absorption coefficient data for RsB films and studied their properties in nonlinear media.
Optical limiting characteristics are found to be enhanced by increasing the thicknesses of films. The studied films
can be used to limit the laser power of wavelengths 632 nm and 532 nm as an optical limiting material. The
present work suggests that film of RsB is a promising candidate for wide-scale optoelectronic applications in-
cluding IR pass filter, laser power attenuation, and selective CUT-OFF laser filters in the wavelength range
490–595 nm.

1. Introduction

Organic based thin films attract the researchers owing to their po-
tential applications in device fabrications such as photovoltaic cells,
FET, and LEDs [1–4]. Optical nonlinearities of organic-based thin films
have attained special attention as high optical nonlinearity is con-
sidered to be a critical requirement in the next generation optical

communication networks for realizing high speed and optical switching
[5]. In particular, dye-based thin films have been achieving intensive
interest in the recent past. Recently, many researchers including our
team have reported the semiconducting nature of many dye-based thin
films [6,7].

The aqua-soluble Rose Bengal (RsB) salt dye (C20H2Cl4I4Na2O5) is
an anionic Xanthene derivative having the configuration 4,5,6,7-tetra-
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chloro-2′,4′,5′,7′-tetra-iodo-fluorescein disodium salt [8]. The first ap-
pearance of the RsB dye in the literature was reported in Schultz’s ta-
bles, in 1881 [8,9]. It is also known as Acid Red 94, Bengal Rose B
sodium salt and Rose Bengal sodium salt. Due to its robust absorption
properties, RsB dye has found a significant part in numerous areas of
medical, photochemistry and optical switching techniques [10,11].
Other people have tried RsB based thin films in poly(vinyl alcohol)
(PVA) matrix and on FTO substrates, and have reported high stability of
such films [12]. This films based on dyes are prepared by various
techniques including spin coating, thermal evaporation, spray pyrolysis
and chemical vapor deposition etc. [13].

In the present work, RsB dye based thin films with different thick-
nesses have been prepared on glass substrates using a spin coating
method. Kramers-Kronig relations are used to estimate the refractive
index and extinction coefficient for RsB thin films using reflectance data
[14,15]. The linear and nonlinear optical properties were extracted
using various models for optical thin films in some details.

2. Experimental details

2.1. Materials and deposition of RsB thin films on glass substrates

The Rose Bengal sodium salt dye was procured from Sigma-Aldrich.
A 10−2 M RsB solution was prepared in 20ml ethanol, mixed under
magnetic stirring at room temperature and filtered well. This solution
was housed inside a dark room to avoid interaction of light with it.
Prior to deposition of films, substrates of glass were washed several
times with soapy water followed by double distilled water and acetone
solutions. At last, substrates were rinsed in water/isopropanol using the
ultrasonic bath to get high quality cleaned substrates and then dried
under nitrogen flow which ensures the absence of any contaminations.
RsB thin films of various thicknesses were coated on glass substrates by
varying the rotation speed of spin coater at 500, 1000, 2000 and
3000 rpm.

2.2. Devices and measurements

X-ray diffraction analysis for RsB-10B films were made by a
Shimadzu XRD-6000 with CuKα of wavelength λ=1.5406 Å, at 30 mA
and 30 kV. The measurements were made in the 2θ range from 10° to
70°. The surface morphology of RsB thin films was investigated by
atomic force microscope (AFM) from (NT-MDT, Next (Russia)) and
grain size and roughness were obtained by software attached to AFM
device.

A JASCO V-570 UV–Vis– NIR spectrophotometer operated at normal
incidence was employed to measure the absorbance abs( λ ), transmis-
sion T( λ ) and reflection R( λ ) of the RsB thin films at 300 K.

A Z-scan system with two lasers named as: He–Ne laser having
wavelength 632.8 nm and input power= 371.5 µW was and Solid state
green laser of wavelength 532 nm and input power= 18.84 mW were
employed to investigate the optical limiting behavior of RsB films. The
sample was fixed on the focal length of the lens. The samples were
mounted on the laser beam path at the focal length of a lens which
focuses the laser on film. The laser beam power with and without the
sample was recorded using an optical power meter fixed at 632 nm and
532 nm.

An Alpha-Step IQ device profilometer was employed to measure the
thin film thicknesses of RsB films on glass. The mean thickness values
were calculated as 324, 259, 158 and 96 nm corresponding to the 500,
1000, 2000 and 3000 rpm of the spin coater, respectively.

3. Results and discussions

3.1. X-ray diffraction of RsB nanostructured thin films

Fig. 1a displays the X-ray diffraction patterns of different

thicknesses RsB thin films. Films clearly display amorphous character-
istics of all the synthesized thin films with the characteristic broad
hump in the diffraction patterns [16]. From our previous work [17,18],
we found that the amorphous nature of organic thin films supports the
nanostructured of as-deposited organic films. Such discussions are
based on the short-range order of amorphous materials. AFM image
shows nanostructured films [Fig. 1b]

3.2. Linear optics of RsB nanostructured thin films using Kramers-Kronig
(K-K) relations

Extracting the optical constants accurately from the optical data
such as transmission and reflection has always amused the research
community and many techniques have been proposed which include
Swanepoel's method [19], pointwise unconstrained minimization
method [20,21]. Compared to these techniques, Kramers-Kronig rela-
tions is simpler, accurate and in the sense that the optical constants can
be calculated just using the reflectance data alone without requiring
detailed information regarding any kind of boundary conditions. That
is, the K-K relations don't require any assumption or extrapolations of
the reflectance experimental data which is beyond the measured range.
The method is useful even when the measured data is limited within the
narrow spectral range [22–24]. In the present study, Kramers-Kronig
dispersion relations were employed to accurately calculate the optical
constants (n and k) from the experimentally obtained reflectance data.
The complex refractive index N ω( )' has the form [25]:

= +N ω n ω ik ω( ) ( ) ( )' (1)

where

(b)

Fig. 1. (a) X-ray diffraction patterns and (b) AFM image of the RsB thin films.
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Fig. 2(a-c) demonstrate the spectral behavior of optical transmis-
sion, T( λ ), reflection, R( λ ) and absorbance, A( λ ) at normal light
incidence for the RsB thin films prepared at different thicknesses. From
these spectra, it is very clear that a distinct absorption valley exists for
the RsB thin films between 500 nm and 600 nm. From Fig. 2a, RSB thin
films exhibit high transparency and bandpass filter characteristics in
the NIR region above 620 nm and transmission declined sharply in the
UV-region. Transmission spectra have the highest value of 82.9% in the
NIR for the 96 nm thin film which gradually decreased to 79.8% for the
324 nm thin film. The absorption edges are observed to make sys-
tematic redshifts with film thickness, from 338 nm for 96 nm film to
342 nm for 324 nm thick RsB thin film. From transmission and ab-
sorption spectra, it is very evident that the films attenuate the trans-
mitted light in the visible spectrum between 500 and 600 nm, in the
absorption valley making the samples as a good choice for CUT-OFF
laser filters in this range. The films exhibit maximum absorption in this
range and a sharp increase in the reflection of light could also be ob-
served for all the samples in the range (Fig. 2b). A systematic increase
in the reflection is also observed with decreasing film thickness, below
600 nm wavelength which altered the order in the high transmission
region> 600 nm. All the above discussions can support the same be-
havior for the absorbance data as shown in Fig. 2c. In absorption
spectra, there are shoulder characteristics related to band valley of rose
Bengal in the wavelength region from 512 to 539 nm.

Band gap, Eg for as-prepared thin films can be assessed from the
absorption edge using the Tauc's relationship. In strong absorption re-
gion, the variation of absorption coefficient α is directly related to the
occurrence of Eg and follows the relation [26–29]:

= −αhυ A hυ E( )g
m (6)

where A is a constant, independent of energy and the index (m) is
characteristics of the optical transition nature involved [30]. In our
case, the optical data for the RsB thin films were best fitted with directly
allowed transition corresponding to m=1/2. Fig. 3 shows the Tauc's
plots for the direct transition of all films. Eg values are attained from
extrapolation of the linear part of (αhυ)2 vs. hυ plot. Eg values are ob-
tained at 1.924, 1.947, 1.954 and 1.979 eV corresponding to the film
thicknesses 324, 259, 158 and 96 nm, respectively. The Eg of current
RsB films is observed to be higher as well as compared with previously

Fig. 2. (a-c). (a) Optical transmission, (b) reflection, (c) absorbance for RsB
nanostructured thin films of different thicknesses.

Fig. 3. Plots of (αhυ)2 versus hυ for RsB thin films of different thicknesses.
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reported values for current as well as other dye systems (see Table 1).
These band gap values are corresponding to the absorption edge wa-
velengths in the absorption valley range. The main absorption edge is
thus attributed to the effect of strong absorption in the visible region of
the Rose Bengal dye. The result indicates a blue shift in band gap values
with reducing film thickness which could be attributed to nano growth
of films [31].

Fig. 4(a & b) shows refractive index and absorption index plots in
the range 330 to 900 nm obtained from Kramer-Kronig calculations for
RsB thin films as-prepared at different thicknesses. From this figure, the
refractive index spectrum displays a multi-oscillator behavior in this
range due to multiple anomalous behaviors of the as-deposited thin
films. The anomalous dispersion behaviors are observed in the ranges
270–420 nm, 515 nm -535 nm and 550–620 nm and could be ascribed
to electron couplings in RsB thin films to the oscillating electric field
generated from the resonance effect between the electron polarization

and the light incident on the films [32]. The spectra display normal
dispersion behaviors in the ranges 440–515 nm, 535–555 and above
620 nm which is the transparent region observed in Fig. 4a. The normal
dispersion of the refractive index may be due to the single oscillator
model. Also, it was noticed that the refractive index increases with film
thickness.

Two main broad absorption bands could be observed in the k-
spectra as shown in Fig. 4b, as follows: in the UV range centered at
375 nm and in the visible range around 590 nm, and both of bands are
slight changes with RsB film thicknesses. The first one corresponds to
the absorption shoulder while the other corresponds to the absorption
valley. Also, it was noted that the absorption index trend with wave-
length is almost analogous to that of the reflection spectrum and so, it
showed the slight difference with a thickness below 350 nm and beyond
750 nm.

A complex dielectric function = +ε ε iε"' can be used to describe the
optical response of any sample subjected to an incident electromagnetic
radiation and defined as square othe f the complex the refractive index,

= +N n ik [33]. Thus,

+ = +ε iε n ik" [ ]' 2 (7)

Hence, the real and imaginary parts of dielectric functions, ε ε& "' can
be correlated with n and k as [34,35]:

= −ε n k' 2 2 (8)

=ε nk" 2 (9)

The real component of dielectric constant, ε ' effectively quantifies
part of the stored energy which is proportional to the field amplitude
and the imaginary component, ε" describes the dielectric loss factor
which is the portion of the electric energy that is lost through move-
ment of ions/molecules as a result of the periodically varying field
during the incident light interaction with the sample. Fig. 5a&b displays
the of real and imaginary components (ε ' and ε '') of dielectric constant
versus wavelength plots in the in the range 330–900 nm, for RsB thin
films. Absorption peaks for ε ' are clear at 1.88, 2.31, 2.79 and 3.91 eV
corresponding to 660, 538, 445 and 318 nm for the RsB of the film
thickness= 248 nm. The ε ' value for RsB films is comparable with
previous reports on current as well as other dye systems (see Table 1).
The trend of the graph with both the incident wavelength and film
thickness is analogous to that of the refractive index spectrum. The
graph displays the blue shift with film thickness a in lower wavelength
region and red shift at the higher wavelength. Fig. 5b represents the
spectral distribution of ε '' versus λ plots for RsB thin films. The graph
showed absorption peaks at 2.04 and 3.16 eV corresponding to 610 and
393 nm of the film thickness= 248 nm. ε '' also displayed the blue shift
of the broad peak in the lower wavelength side and red shift in the
higher wavelength with the film thickness. The ε '' value for RsB films is
comparable with previous reports on current as well as other dye sys-
tems (see Table 1).

Optical response of a thin film can be conveniently studied using
optical and electrical conductivities (σopt and σe), respectively estimated
from the experimentally obtained absorption coefficient α( ). The optical
conductivity is an overview of the electrical conductivity in the alter-
nating field and strongly dependent on the free carriers allowed

Table 1
Comparative Eg and ε ' and ε '' values for current and previously reported dyes.

Authors Materials Eg, (eV) ε' ε''

Present work Rose Bingal 1.924–1.979 -1 – 11 eV -2 – 8 eV
Mohd Shkir et al. [J Mater Sci: Mater Electron (2017) 28:10573–10581] Phenol red 2.2 4.8–23 eV 0.6 – 8.5 eV
Abutalib et al. [Optik 127 (2016) 6601–6609] Fluorescein dye 1.95–1.99 2.7–4.9 0.05–1.1
I.S. Yahia et al [PhysicaB490(2016)25–30] Rhodamine B 2.10 0.02–55 —
El-Bashir et al., [Results in Physics 7 (2017) 1852–1858] Rose bengal/FTO — 1–85 0.001–2
El-Bashir et al., [Results in Physics 7 (2017) 1238–1244] PVA/ Rose bengal 3.923–1.838 — —

Fig. 4. (a&b). (a) Refractive index and (b) absorption index plots obtained from
k-k calculations for RsB thin films of different thicknesses.

M. Aslam Manthrammel et al. Optics and Laser Technology 112 (2019) 207–214

210



interband transitions in the material [36,37]. The optical conductivity
could be estimated from the relations [36,38,39]:

=σ αnc π/4opt (10)

and
The electrical conductivity is related to the optical conductivity by

the relation [38]:

=σ λσ α2 /e opt (11)

where n and c are refractive index and light speed, respectively.
Fig. 6(a,b) represent the spectral represents of optical and electrical
conductivity versus wavelength for as-prepared RsB thin films of dif-
ferent thicknesses. From these figures, it is very clear that σoptplots ex-
actly resemble that of ε '' indicating the high dependence on the ab-
sorption coefficient of rose Bengal dye. Also two wide bands centered
around∼ 395 and∼ 605 nm are observed in the Fig. 6a, which are
corresponding to the absorption shoulder and absorption valley ob-
served in the transmission/absorbance spectra. Due to the high ab-
sorption, more free carriers are available for conduction in these wa-
velengths. The optical conductivity decreases after the peak points as
the incident photon energy decreases with increasing wavelength and
thus, the excited free carriers available for conduction decreases. The
valleys and negative points in the spectrum point out the trapping of the
free carriers. Fig. 6b, displays the spectral behaviors of σe with respect
to wavelength for all RsB thin films. From the graph, σe increases with

the wavelength, accordan ince with the formula, = =σ λnc π2 /4e
λσ

α
2 opt .

Moreover, as expected from the formula, the σedependence on the film
thickness analogous to the variation of refractive index as a functionthe
of film thickness.

3.3. Nonlinear optics of RsB nanostructured thin films

Organic based thin films are a special class of optoelectronic ma-
terials with proven nonlinear optical (NLO) properties by which an
applied electric field can modify the refractive index of the film. These
properties are very useful in telecommunications, optical waveguides,
and devices based on photorefractive effects [40]. The nonlinearity of
optical susceptibility and optical polarizability (P) of thin films can be
evaluated using [17,41]:

= +P χ E P ,nl
1 (12)

and

+=P χ E χ E ,nl
2 2 3 3 (13)

where χ1 and χ3 are linear and third-order nonlinear optical suscept-
ibilities, respectively [42]. Linear refractive index, n( λ ) can be eval-
uated using the below equation:

= +n λ n λ n E( ) ( ) ( )0 2
2 (14)

where (E)2 is the mean square of electric field [43]. In most cases,
≫n λ n λ( ) ( )0 2 , yielding =n λ n λ( ) ( )0 . The χ1 and n are related by:

=
−χ n
π

1
4

1 0
2

(15)

Also, χ3 and χ1 are related by the simple relation:

Fig. 5. (a,b). Spectral behaviors of ε ' and ε '' versus λ for RsB nanostructured thin
films of different thicknesses.

Fig. 6. (a,b). Spectral behaviors of the optical conductivity, and the electrical
conductivity estimated from optical measurements for RsB thin films of dif-
ferent thicknesses.
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=χ χA. ( ) ,3 1 4 (16)

implying,

= −−χ A π3 (4 ) (n 1) ,4
0
2 4 (17)

where A=1.7× 10−10 esu is a constant [44,45]. Fig. 7 (a,b) represent

the plots of linear and third-order nonlinear optical susceptibilities, χ1,
χ3 with respect to the wavelength for RsB thin films. The plot of χ1

closely resembles that of ε ' except in the absorption valley range be-
tween 500 nm and 600 nm and suggests a strong relation between them.
From the graph, the χ1 values are found varying between -0.015 and
0.877 and 0.028 and 0.787 for the 96 nm thin film and 324 nm thin
films, respectively, while the other films with the intermediate thick-
nesses followed the intermediate values. The value of χ1 is found
varying between -0.026 and 0.877 while that of χ3 is found varying
between 4x10−15 and 1.01×10−10, with wavelength. Also, the value
of χ3 is found increasing with decreasing film thickness while that of χ1

followed a mixed pattern. The value of χ1 increased with the film
thickness in the wave length ranges below 500 nm and beyond 600 nm
while displaying the opposite trend in between wavelength range. The
plot of nonlinear refractive index n2 for RsB thin films as a function of
wavelength is depicted in Fig. 7(c). The nonlinear refractive index can
give significant information regarding the light gathering capacity of
the film and thus considered as a very important parameter while
studying the nonlinear behavior of a sample. The nonlinear refractive
index, n2 and χ3 are related by [46,47]:

=n πχ
n

122
3

0 (19)

From the figure, the value of n2 is varying between 2x10−15 and
1.95x10−9. It was also noticed that the n2 value decreases with film
thickness and plot of n2 is closely analogous to that of χ 3 and validates
their strong dependence. The values of χ1, χ 3 and n2 for currently
prepared RsB films are observed to be comparable with previous reports
on current as well as other dye systems (see Table 2).

3.4. Optical limiting analysis of RsB /glass thin films

The optical limiting study is one of the key characteristics of optical
materials which make them suitable for laser devices and human eyes.
Hence, the optical limiting investigation has been carried out on the
deposited films using two lasers of wavelengths 632.8 and 532 nm and
effect of thickness have been studied. The optical limiting data from
both lasers have been provided in Table 3. It can be seen that the output
saturated power from both lasers is decreasing with the increase of the
thickness of the films. This shows that thickness is playing a vital role in
modifying the optical limiting behavior of RsB. As the limiting effect of
the films is enriched, the possible reason it may be the higher thickness
films possess a large number of molecules to compare to lower thickness
films and hence they are taking part at large scale during the processing
of nonlinear absorption [48,49]. Hence, the higher thickness films
showing sturdy optical limiting characteristics and will be more ap-
plicable to laser devices.

4. Conclusions

Successful fabrication of Rose Bengal (RsB) nanostructured thin
films was carried out on a glass substrate with different thickness using
spin coating technique for the first time in literature. A robust in-
vestigation has been done on key characteristics of RsB thin films af-
fected by thickness. Optical measurements were carried out to study
various linear and nonlinear properties of RsB thin films. The refractive
index and extinction coefficient was accurately estimated using
Kramers–Kronig relations. Non-linear susceptibility and nonlinear re-
fractive index studies were made on the principles of linear refractive
index dispersion. Optical limiting behavior was studied using 632.8 and
532 nm lasers and the strong effect of thickness was observed. High
transmission, IR bandpass and selective band stop filter and optical
limiting characteristics make the RsB thin films a suitable semi-
conductor competitor for many optoelectronic applications.

Fig. 7. (a-c). (a) linear optical susceptibility, χ(1), (b) third-order nonlinear
optical susceptibility, χ(3) and (c) nonlinear refractive index, n2 vs. wavelength
plots for the RsB thin films.
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The input
Intensity of
(Io)
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Io=15.84 mW

Samples Output
power
(µW)

Normalized
power= output
power/input power

Output
power
(mW)

Normalized
power=output
power/input powerThickness

(nm)
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